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a tale of genius
GGeeoorrggee  BBoooollee........

.…was born in Lincoln, England on Nov. 2nd 1815. He

inherited his father's passion for science and by the age of

14 could read Latin, Greek, French and German. But

Boole's family fell on hard times, and he was forced find

work to support them. 

Boole discovered and taught himself mathematics while

teaching in local schools. The papers that he published in

the Cambridge Mathematical Journal earned him respect

as a capable mathematician. In 1849, despite lacking a

university degree, he was offered the first professorship

of mathematics at Queen's College, Cork, in Ireland,

where he taught until his death on Dec. 8th, 1864.

In 1854, Boole published his greatest and most influential

work: "An Investigation Into the Laws of Thought, on

Which are Founded the Mathematical Theories of Logic

and Probabilities" in which he brilliantly combined algebra

with logic. In 1937 Claude Shannon placed Boole's

abstruse reasoning in an engineering context where it

became instrumental in the development of the digital

computer.

Boole was well liked and known to be extremely

dedicated to his research, his students and his family. He

is remembered as a personable, congenial, kind-hearted

teacher and a brilliant mathematician. His papers are

preserved in the archives of the Boole Library at

University College, Cork. A lunar crater also bears his

name.

CCllaauuddee  EEllwwoooodd  SShhaannnnoonn........

….was born in Petoskey, Michigan, on April 30th, 1916.

He graduated from the University of Michigan in 1936

with bachelor's degrees in mathematics and electrical

engineering. In 1940 he was awarded both a master's

degree in electrical engineering and a Ph.D. in

mathematics from the Massachusetts Institute of

Technology (MIT).

Shannon joined the Mathematics Department at Bell

Labs in 1941 with which he remained affiliated until

1972. He became a visiting professor at MIT in 1956, a

permanent member of the faculty in 1958, and a

professor emeritus in 1978.

Shannon was renowned for his eclectic interests and

capabilities. A favourite story describes him juggling while

riding a unicycle down the halls at Bell Labs. He also

designed and built chess playing, maze-solving, juggling

and mind reading machines. These activities bear out

Shannon's claim that he was motivated more by curiosity

than usefulness. In his words "I just wondered how things

were put together."

Another example of Shannon's diverse interests is his

1949 paper entitled "Communication Theory of Secrecy

Systems", a work now generally credited with transform-

ing cryptography from an art into a science.

Claude Shannon died on February 26th, 2001



One of this journal's editorial
policies - borrowed from that
giant of radio broadcasting,

John Reith - is "to inform, to educate and
to entertain". Well, we try our best.

While chewing on my pencil wondering
how I might achieve any of these
objectives, I was compelled to pause to
take in what I regard to be one of the
most evocative pieces of music ever
written. The recording I was playing (I'm
ashamed to say for background listening)
was of Franz Schubert's string quartet in
D minor, popularly named "Death and
the Maiden". In the slow movement the
composer paints a picture of Death
responding to a maiden's pleas to pass
her by, gently assuring her that he
comes to take her as a friend. And
Death was soon to take Schubert,
before he could enjoy the royalties that
would later accrue to others or
appreciate the extent of his musical
legacy.  Marx, Diesel, Braille, Goodyear,
Hertz (as in "Hz"), Silver (the ubiquitous
bar code) and Shakespeare are a few
who spring to mind (apart, of course,
from several notable religious prophets)
that undoubtedly left this life with little

idea of the impact that their work would
have - for better or worse - on later
generations. 

George Boole is another. A little-known
professor of mathematics, Boole left
behind a curious form of algebra, of
interest to his peers but of no known
practical value: until, that is, it was
stumbled across many years later,
outside the realm of pure mathematics
and almost by accident. For Boole's
"algebra of logic" and its associated laws
were to become fundamental to the
design of digital circuits. While it is
untrue to say that digital computing and
communications would not have existed
but for Boole's work, it's difficult to
imagine how, without it, complex binary
circuits could operate reliably.

According to Boole
As is often the case with invention,
Boole was not the first to investigate the
problem. But in contrast to earlier
attempts at "symbolic logic", Boole's
exploration resulted in equations and
techniques that make possible a
scientific treatment of logic in which
logical relationships can be expressed as
formulae, free from vagueness and
ambiguity.  Although "Boolean logic"
cannot be applied to the many everyday
situations that involve speculation or
uncertainty, it can be applied to the
factual statements that form the basis of
digital computing. 

Boole argued that we tend to select
things from within a boundary containing
all possible choices. If asked to select the
large black balls from a bowl containing
black and while balls of two sizes, our
selection criteria would probably be
large AND black. Conversely, if asked to
exclude all large black balls from our
selection using the same operands, our
criteria would become black NOT large.

In either case we exclude all the white
balls because they're not of the correct
category. If, however, we needed all the
large black and all the small white balls,
our selection criteria would be (black
AND large) OR (white NOT large). 

Boolean logic implements this type of
reasoning, an approach we now apply
when using an Internet search engine to
perform a "Boolean search".  For
example, searching for George AND
Boole returns references in which both
the words George and Boole appear,
while searching for George OR Boole lists
those in which either word appears. In
fact we're combining and manipulating
our search criteria using a binary 'true-
false' (or 'open-shut', 'zero-one', 'yes-no',
'on-off', etc.) approach. A more recent
development, "fuzzy logic", can handle
the concept of partial truth - values that
lie between "completely true" and
"completely false" - but that's another
story.  

In Boolean logic, the symbols used - for
example 'p' and 'q' - are not variables in
the same sense that 'x' and 'y' are often
used to represent numbers in conven-
tional algebra. Boole defined a set of
rules that specify the result of the
permitted operations on the symbols,
but without any regard to what they
actually represent. The symbols can of
course be interpreted, for example in
terms of the black and white balls
mentioned above, but logic that results
in accepting the equation "1+ 1 = 1" is
certainly not true of conventional
algebra! 

The three basic "operators" in Boolean
algebra are 'AND', 'OR' and 'NOT'.
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"He looked, not like a professor writing a demonstration on a blackboard, 
but like an artist painting from a vision". 

George Boole described by a student.

George Boole, 1815-1864
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1 Professor Bush was to become a key figure is 20th Century American scientific development

The 'AND' operator 

In Boolean algebra, the AND operator is
signified as a '.' although the dot is often
dropped, p.q simply being written as pq.
Four possibilities can be derived from
combining the symbols p and q (fig.1).
Returning to the analogy of black and
white balls, p could be interpreted as
the property of being black and q of
being large. In this case pq represents
being black AND being large. According
to Boole, if both operands are true the
overall value is 'true' (fig.2); but if p is
false (not black), or q is false (not large),
or if both operands are false, then pq is
false. In other words pq can only be
true when both its operands p and q are
true (i.e. 1.1 = 1). 

An easier way to represent the possible
combinations is to use a "truth table"
(fig.3), each row of which shows the
value of pq for given values of p and q,
but using 1s and 0s to represent true
and false.

The 'OR' operator

In Boolean algebra '+' (not to be
confused with the '+' used in arithmetic)
signifies the OR operator. In our analogy
of black and white balls, p + q
represents the selection of items in the
bowl that have the property of being
black OR being large (OR both).
According to Boole if either or both
operands are true, then the overall
result is true and we finish up with all
the black balls, regardless of their size,
and the large white balls. And, as is
illustrated by the truth table at fig. 4, the
equation 1 + 1 = 1. 

The NOT operator

The NOT operator (fig.5) has just one
operand, which it negates or "inverts"; in
other words it transforms true into false,
and vice versa. It is represented either
by placing an inverted comma behind
the inverted symbol (NOT p is written
p') or by placing a bar over it (NOT p
being written p ). 

A bright idea
With the exception of students of
symbolic logic, Boole's work was to
remain largely unknown and unused for
over 80 years after his death until a
research student at the Massachusetts
Institute of Technology, who just
happened to have studied both logic and
electrical engineering, applied it to the
construction of switching circuits.
Reflecting on events some 50 years later,
Claude Shannon's comment "it just
happened that no one else was familiar
with both fields at the same time"
portrays commendable modesty.

Shannon was recruited by
Vannevar Bush1 to work on the
maintenance of Bush's large analogue
computer. Analogue machines no longer
occupy a place in mainstream IT, so it's
worth saying a few words about their
role in solving complex scientific and
engineering problems before the age of
the digital computer.

pq

For the case when:

1. p is true (black) and q is true (large) then pq is true (i.e. a large black ball);

2. p is true (black) and q is false (not large), then pq is false (i.e. a small black ball);

3. p is false (not black) and q is true (large), then pq is false (i.e. a large white ball);

4. p is false (not black) and q is false (not large), then pq is false (i.e. small white ball).

Fig 2
pq

1. Both p and q can be true;

2. p can be true and q false;

3. p can be false and q true;

4. Both p and q can be false.

Fig 1

Fig 3

p q p + q

1 1 1

1 0 0

0 1 0

0 0 0

Fig 4

p q p + q

1 1 1

1 0 1

0 1 1

0 0 0

Fig 5

p p'

1 0

0 1

Truth table for the 'OR' operator

Truth table for the 'NOT' operator

Truth table for the 'AND' operator



The adjective analogue can be defined as
"of a circuit or device having an output
that is proportional to the input". The
concept behind analogue computing is
that instead of computing with discrete
numbers, a physical model of the system
to be investigated is built and its charac-
teristics measured under different input
conditions. 

Before the coming of the digital
computer, analogue machines were the
only computational aides available for
attacking such complex problems as
current flows in the newly emerging
national power networks, where the
mathematical equations involved were
too difficult to solve manually, assuming
that they could be defined! Laboratory
models or "analogues" were constructed
from the various resistive, capacitive and
inductive elements exhibited by such
networks to study their real-world
behaviour. And some were extremely
complex; the AC Network Calculator
constructed at the Massachusetts
Institute of Technology during the 1920s
to study current flow in grid systems
took up an entire room.

Bush's Differential Analyser was a further
example. Unlike other analogue
computers, which were generally single
purpose devices, the Differential
Analyser was designed to attack a range
of scientific and engineering problems
that could be specified in terms of differ-
ential equations. It performed its calcula-
tions in decimal, rather than in binary,
and like the slide rule and the clockwork
watch, these were based on measure-
ments of movement and distance. The
machine used shaft movement to
represent variables, gears to multiply
and divide, and differential gears to add
and subtract. It could calculate up to 18
independent variables, while integration
was achieved using a sharply edged
wheel spinning at variable radius on a
round rotating table. 

Just as Charles Babbage had planned to
power his computer with a steam
engine a century before, the only part
that electricity played in the Differential
Analyser was to drive its shafts. But
despite looking back to the Babbage era,
Bush's brainchild was in its time a marvel
of scientific engineering, and several
examples were built.

The Differential Analyser required a lot of
maintenance. Its gears had to be
manually configured to specific ratios
before it could process a problem and
Shannon was put to work on this
monotonous task, while at the same
time being encouraged by Bush to base
his master's thesis on the machine's
logical operations. Perhaps an inevitable
consequence was that Shannon
considered ways to improve the existing
arrangements by replacing the purely
mechanical parts with electric circuits
laid out using the Boolean principles that
he'd learned as an undergraduate. 

Shannon completed his thesis in 1937
and in the following year published a
paper based on it - "A Symbolic Analysis
of Relay and Switching Circuits" - in which
he demonstrated how to build logic
circuits from electromechanical relays.
The paper was hailed as brilliant and the
ideas put forward were almost
immediately applied to the design of
automatic telephone switching systems. 

Gates for channelling logic
Shannon was concerned with represent-
ing the Boolean operators 'AND', 'OR'
and 'NOT' in terms of electro-
mechanical circuits. He accomplished
this by configuring relay contacts to
conduct current (true) or not (false)
according to which relays were
energised (i.e. 'shut') or released (i.e.
'open'). For example, a simple 'AND'
circuit (fig.6) requires both its relays (p
and q) to be shut to light the lamp. If
only one relay (or neither) is shut, the
lamp will not light; these events
correspond to the truth table at fig.3.

Similarly in an 'OR' circuit the lamp will
light if either (or both) of its relays is
shut, corresponding to the truth table at
fig.4. In the 'NOT' circuit, relay p is fitted
with a 'break', rather than a 'make'
contact. The lamp is therefore lit (true)
when the relay is open (false), and is
extinguished (false) when the relay is
shut (true - see fig.5). The analogy is
rather like a succession of gates opening
and shutting.

Electro-mechanical relays are useful for
illustrating Boolean operators, but logic
circuit designers now use standard
symbols (fig.7) to represent the "logic
gates", as they're called, used to
compute Boolean functions. In common
with the relay circuits in fig. 6, all have
inputs and outputs that are limited to
two values, 1 (true) and 0 (false); or in
electrical terms, to set voltages (e.g.
+5V and 0V). 
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Claude Shannon, 1916-2001
Photo: Bell Labs

Fig 6
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Although there are symbols for more
than the Boolean operators AND, OR
and NOT, all can be derived from these
three. The NAND gate, for example, is
simply an AND plus a NOT gate in
tandem; likewise the NOR gate is an OR
plus a NOT gate in tandem, whilst the
exclusive OR gate - XOR - shown in
fig. 7 is made up from the gates shown
in fig.8. Unlike a conventional OR gate,
XOR gives a true value if either, but not
both, of its inputs are true (fig.9). One of
its applications is in the circuitry used to
add binary numbers in a computer's
arithmetic logic unit. The symbol for the
XOR operator is a circle containing a '+'
sign, ⊕

Simplifying the problem
Simply stringing gates together to
perform a logical function would lead to
complexity and the wasteful use of
components. The rules of Boolean logic

can be used to avoid creating these
problems by allowing complex logical
functions derived from truth tables to be
greatly simplified.

For example, the truth table in fig.10
represents the Boolean function A'B'C
+ A'BC + AB'C + ABC' + ABC. This
could be implemented using five AND
gates, five NOT gates and an OR gate,
as shown in fig.11, but this scheme can
be simplified and the number of
components reduced to achieve the
same end. There are different methods
for doing this, but in this particular case
simply manipulating the algebra using
one of the rules that Boole defined
(i.e. x + x' = 1) results in……

ABC + A'BC + ABC' + A'B'C + ABC'
= BC(A + A') + B'C(A + A') + ABC'
=  BC + B'C + ABC'  = 

C(B + B') + ABC'  = C + ABC'  

The final step can be further simplified
to C + AB by using another Boolean
identity, x +x'y = x + y.  Thus the
original circuit reduces to one AND gate
plus one OR gate (Fig 12).

World's smallest logic gate
Whereas Shannon worked with relays,
vacuum tube circuits soon followed (not
necessarily smaller, but very much
faster), then discrete transistors (much
smaller) and finally microchips, which
seem continually to break new barriers
of miniaturisation - according to a recent
IBM research notice, scientists are now
building logic circuits at the molecular
level.

What are claimed to be the world's
smallest working computer circuits use
an approach in which individual
molecules move across an atomic
surface like toppling dominoes. The new
"molecule cascade" technique enables
working logic circuits to be constructed
some 260,000 times smaller than those
in advanced microchips.

The circuits were made by creating a
precise pattern of carbon monoxide
molecules on a copper surface. Moving a
single molecule initiates a cascade of
molecule motions, just as toppling a
single domino can cause a large pattern
to fall in sequence. Tiny structures were

then created to demonstrate the
fundamental Boolean OR and AND
functions, data storage and retrieval, and
the "wiring" necessary to connect these
components into a functioning
computing circuit. The most complex
circuit built was a 12 x 17 nanometre (a
billionth of a meter; the length of five to
10 atoms in a line) three-input sorter, so
small that 190 billion could fit on top of
a standard pencil-top eraser 7mm in
diameter. 

Computation is possible because each
cascade carries a single bit of
information. By analogy, a toppled
domino can be thought of as a logical
"1", and an untoppled domino a logical
"0". Similarly, a cascaded or non-
cascaded molecular array can represent
a logical "1" or "0," respectively. The
logical AND and OR operations, and
other features needed for complex
circuits, are created by cleverly
designing the intersections of two
cascades. Molecular arrangements have

Fig 7

Fig 8

Fig 10

A B C Out

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Fig 9

p q p xor q p nxor q

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1
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been designed to act as crossovers
(allowing two cascade paths to cross
over each other) and fan-outs (splitting
one cascade into two or more paths).
Boole would surely be staggered by such
developments!

Epilogue
Claude Shannon came to be widely
regarded not just for his work on logic
circuitry, but for solving technical and
engineering problems within the
telecommunications industry. After
making the link between Boolean logic
and switching circuits, he went on to
undertake research at the Bell Telephone
Laboratories on the problem of trans-
mitting information more efficiently. In
his paper "A Mathematical Theory of
Communication'' published in 1948,
Shannon explained the communication
of information in digital terms. The idea
of transmitting pictures, words, sounds
etc. as a stream of binary digits (1's and
0's) is something now taken for granted
but at that time it had only been
considered in analogue terms as the
transmission of electromagnetic waves.
The concept of digital transmission was
fundamentally new. Although he went on
to publish further research including
important work on cryptography,
Shannon's 1948 paper on digital trans-
mission was to be the pinnacle of his
achievement. 

Shannon's work at Bell Labs led him to
be regarded in his lifetime as the
founding father of the digital communica-
tions age, but George Boole was less
fortunate. He got soaked in a heavy
rainstorm while walking from his home
to college, where he then lectured in
wet clothes before returning home to
mark papers. Unsurprisingly George
caught a cold. His wife Mary, believing
that the remedy should resemble the
cause, put him to bed, and since his
illness had been caused by getting wet,
poured buckets of water over him.
Perhaps the inevitable consequence was
that George contracted pneumonia from
which he died, leaving behind the tools
that would enable others to create appli-
cations of which he could never have

dreamed. Taking account of the essential
part played by digital circuitry in placing
men on the Moon, it's a fitting tribute to
George Boole that a lunar crater now
bears his name.  

Ian Petticrew

Postscript

Alicia Stott (1860-1940) was the third of
George and Mary Boole's five daughters.
Like her father she received no formal
education in mathematics but this did
not prevent her becoming well-known
for her research in analytical geometry.
In 1914 she was awarded an honorary
doctorate by the University of
Groningen in the Netherlands where her
papers were published. A co-researcher
described her thus: “The strength and
simplicity of her character combined
with the diversity of her interests to
make her an inspiring friend.”

See also:

Freeware: software to construct and run
your own digital circuit

http://www.spsu.edu/cs/faculty/bbrown/ 
circuits/

Freeware: a software tool for simplifying
Boolean functions using Karnaugh maps

http://puz.com/sw/karnaugh/index.htm

Working traffic light model - demonstrates
each logic gate's switching function

http://users.senet.com.au/~dwsmith/ 
beginners.htm

George Boole: "The Calculus of Logic"
http://www.maths.tcd.ie/pub/HistMath/ 
People/Boole/CalcLogic/CalcLogic.pdf

Claude E. Shannon - "A Mathematical Theory
of Communication"

http://cm.bell-labs.com/cm/ms/what/ 
shannonday/paper.html

Fig 11

Fig 12

Simplifying logic circuits

Simplifying logic circuits

World's smallest logic circuit - (Photo IBM)


